Evidence for the contribution of point mutations to vlsE variation and for apparent constraints on the net accumulation of sequence changes in vlsE during infection with Lyme disease spirochetes.
نویسندگان
چکیده
In the Lyme disease spirochetes, both the ospE and vlsE gene families have been demonstrated to undergo sequence variation during infection. To further investigate the mechanisms associated with the generation of vls variation, single-nucleotide polymorphism and subsequent DNA sequence analyses were performed on the vlsE gene and its paralog, BBJ51, a related gene with a frameshift mutation. These analyses focused on a series of postinfection clonal populations obtained from mice infected with Borrelia burgdorferi B31MIpc or its clonal derivative, B31MIc53. vlsE, but not BBJ51, was found to undergo sequence changes during infection. Consistent with that reported previously (J.-R. Zhang et al., Cell 89:275-285, 1997) many of the sequence changes appear to have arisen through gene conversion events and to be localized to the variable regions of vlsE. However, analysis of the vlsE nucleotide sequences revealed that some sequence changes were the result of point mutations, as these changes did not have potential contributing sources in the vls cassettes. To determine if sequence changes accumulate in vlsE over long-term infection, the vlsE genes of clonal populations recovered after 7 months of infection in mice were analyzed. While new sequence changes developed, a significant number of these changes resulted in the restoration of the vlsE sequence of the original infecting clone. In addition, we noted that some positions within the variable regions (VR) are stable even though the cassettes possess residues that could contribute to sequence variation through gene conversion. These analyses suggest that the total number of amino acid sequence changes that can be maintained by VlsE levels off during infection. In summary, in this report we demonstrate that the development of point mutations serves as a second mechanism by which vlsE sequence variation can be generated and that the capacity for vlsE variation, while still significant, is less than previously postulated.
منابع مشابه
Evidence that the variable regions of the central domain of VlsE are antigenic during infection with lyme disease spirochetes.
It has been postulated that the vls system of the Lyme disease spirochetes contributes to immune evasion through antigenic variation. While it is clear that vlsE undergoes sequence change within its variable regions at a high frequency during the early stages of infection, a definitive role in immune evasion has not been demonstrated. In this report we assessed the murine and human humoral immu...
متن کاملEvaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi
Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far o...
متن کاملDetailed Analysis of Sequence Changes Occurring during vlsE Antigenic Variation in the Mouse Model of Borrelia burgdorferi Infection
Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection...
متن کاملVariable VlsE Is Critical for Host Reinfection by the Lyme Disease Spirochete
Many pathogens make use of antigenic variation as a way to evade the host immune response. A key mechanism for immune evasion and persistent infection by the Lyme disease spirochete, Borrelia burgdorferi, is antigenic variation of the VlsE surface protein. Recombination results in changes in the VlsE surface protein that prevent recognition by VlsE-specific antibodies in the infected host. Desp...
متن کاملCentral Role of the Holliday Junction Helicase RuvAB in vlsE Recombination and Infectivity of Borrelia burgdorferi
Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 183 20 شماره
صفحات -
تاریخ انتشار 2001